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IMPACT OF ECCENTRICITY  ON EAST-WEST STATIONKEEPING 

FOR  THE GPS  CLASS  OF ORBITS 

Todd A. E l i  
A strong  relationship  exists  between  eccentricity  and  the  potential  for  an  orbit 
with a mean  motion  commensurability  to the  Earth’s  rotation  rate  to be chaotic. 
These complex  motions  can  significantly  impact the east-west stationkeeping 
process for  maintaining the  repeating  groundtrack  property of a commensurate 
orbit.  The focus of the current study is to investigate  orbits with characteristics 
that are similar  to GPS satellites  except with modestly  larger  eccentricities. I t  will 
be shown  that  at  eccentricities  larger  than - .01 the  chaotic  regions  become 
significant,  and  the  need arises for a robust stable stationkeeping  approach. 
Furthermore,  the  investigation will develop  an  analytical  model  for  eccentricity 
and  show the  factors that contribute to its growth, t h u s  increasing the probability 
of encountering  chaotic motion  during a typical  satellite  lifetime. These results 
are applied  to selected GPS orbits. It is determined  that if the  initial  eccentricity 
is sufficiently large,  then  the  traditional SK methods  can  destabilize  and a more 
robust  technique is required. 

INTRODUCTION 

A strong relationship exists between eccentricity and the potential for an orbit with a 
mean  motion commensurability to the Earth’s rotation rate (i.e., repeating groundtrack 
orbits) to be  chaotic.’ This is true at all values of eccentricity, but, perhaps  most 
dramatic, is  that  it  is true even for orbits that  are  nearly circular. These complex motions 
can have a significant impact on  the east-west stationkeeping process that maintains a 
commensurate orbit’s repeating groundtrack property.  Ely and Howell2 have  shown  that 
traditional stationkeeping (SK) methods  are  unable to maintain a repeating groundtrack  in 
the presence of complex dynamics, such as  with chaotic motion. They  developed  an 
alternate SK method, called eccentric orbit stationkeeping (EOSK), that  has  proven 
successful at  maintaing a repeating groundtrack for eccentric, commensurate orbits. In 
particular, eccentric orbits are more likely to encounter stroboscopic nodal accelerations 
(or an equivalent action rate) that  pass  through a value of zero and destabilize the 
traditional SK methods. The EOSK approach has demonstrated its ability to remain 
convergent in  the  presence of these zeros. 

The focus of the current study is to investigate satellite orbits with characteristics that 
are similar to those  used  by the Global Positioning System (GPS) except the eccentricities 
used are modestly larger. It  will  be  shown  that  at eccentricities larger than - .01 the 
chaotic regions  become significant, and  the  need arises for a robust stationkeeping 
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approach, such as  the EOSK approach. Furthermore, the investigation reveals that  the 
influence of luni-solar perturbations and tesseral perturbations (with a stationary 
stroboscopic node) contribute to the  growth of eccentricity, and,  thus,  increases  the 
probability of encountering nodal accelerations that pass through a zero. Selected GPS 
orbits are examined and found, given  certain conditions on initial values, to need  the 
EOSK algorithm to maintain  track. 

FORMAL  MODEL  DEFINITION 
A general long period  dynamical  model for the orbits considered in this study  can  be 

represented formally as  an  integrable  Hamiltonian H,(Z) being perturbed by additional 
conservative terms rH,  ( I ,  6 ) . The following is a brief  summary of the  relevant 
perturbations, a detailed  development of the model can be found in  reference [3]. The 
Hamiltonian is transformed into a set  of actiodangle variables (Z,6) that  prove 
convenient for studying mean  motion resonances with the Earth.’  Included  in H ,  is the 
inverse square  gravity term from a spherical Earth, a secular term due to the Earth’s 
oblateness (i.e., the potential energy  term V b g  ), and an  additional  term introduced 
because  the reference frame is fixed  in  the Earth and rotates with it. The  perturbation 
r H 1 ( Z , 6 )  includes long period potential energy terms from  the Earth’s tesseral 
harmonics (longitude dependent) V 7 ,  the Earth’s zonal harmonics (longitude 
independent) V’, the Moon’s harmonics V l ,  and  the Sun’s harmonics V s .  Note,  the 
superscript 08 is used  when  referring to Earth oblateness, 7 for tesseral terms, 9 for zonal 
terms, P for lunar quantities, and S for solar quantities. Formally, the  Hamiltonian  takes 
the following form, 

H = H , ( Z ) + E H , ( Z , ~ ) ,  (1) 

where  the actiodangle pairs  are  defined  as follows, 

The  variables ( a ,  e, i , M ,  w, Q) represent  the classical elements defining the  mean 
orbit associated  with a given  trajectory.  Additionally, s, is the  integer  nearest  the ratio: 
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satellite mean  motion over Earth rotation rate (i.e., so = 2 is associated with a 12  hr orbit), 
p is the Earth's reduced mass, 6, is the Greenwich sidereal angle  and 8, is its 
associated rate. The quantity R, is  the longitude of the ascending node of  the lunar orbit 
(referenced to the ecliptic plane),  and R, is the ascending node of apparent solar orbit 
(referenced to the equatorial plane). Note that the angle A ,  called the stroboscopic mean 
node, has a slow variation in  time due to the commensurability between satellite mean 
motion  and the Earth's rotation rate (that is, (n;r + h ) / s ,  +a = 8, ). Furthermore, the 
perigee w and the right ascension of the ascending node R vary slowly, primarily because 
of Earth's oblateness. The ascending nodes R, and R, vary linearly with time. 

STATIONKEEPING PERFORMANCE AS A FUNCTION OF ECCENTRICITY 

A Poincare section is a useful  tool for analyzing  the relationship between eccentricity 
and  the chaotic regions of phase space produced  by  an eccentric, commensurate orbit. 
Figure 1 displays two plots, the upper one is a Poincark section of orbits with initial 
values  of (a,e,i,R,w,M)= (variousperiodsnear12hrs,55",.01,0",65",-47") ; the lower 
plot is similar except the initial eccentricity has  been increased to .02. The dynamical 
model  used to produce the trajectories is long period  with secular oblateness effects and 
critical tesseral harmonics up to 4'h order and degree (no other zonal  and luni-solar 
perturbations are present). Note  the existence of chaotic regions in both plots (identified 
by the scattered dots), and  the  marked increase in the complexity and extent of these 
regions in the plot with e = .02 as compared to e = .01. Prior  research  has  shown  that  the 
implication of these complex dynamics is that the traditional east-west stationkeeping 
method is much  more likely to become unstable (that is, the action rate Z, or, 
equivalently, the nodal  acceleration 2 changes sign during a stationkeeping cycle)  in 
these regimes2  To assess this possibility, it is instructive to analyze the equations of 
motion associated with a satellite that is controlling its stroboscopic mean node to remain 
within a specified deadband region (i.e., east-west SK), 

Equation (4) represents a local  dynamical model that is reduced from Equation (I), 
the  reduction procedure can  be  found  in reference [2]. It has 3/2-Degrees of Freedom 
(DOF) with phase variables that include the  action I = I ,  -I,* = s , (L - L*) = 

3 



Table 1: GPS Satellite Locations  Nearest  Action Rate Zeros 

Sat ID 
14.698 58.638 188.089 A4 
A (deg) u = w+M (deg) Ll (deg) 

E2 
119.693 28.628 308.089 c 2  
25.093 3 19.428 68.089 

I B3 I 248.089 326.808 I 208.783 

s , , / x ( a  -a*)/2 , the stroboscopic mean  node A ,  and  perigee w . The starred '*' 
parameters represent values of the  associated variable at the location of the exact 
commensurability between  the secular rates, that is = 0. Proceeding in a manner 
similar to the classical control strategy,  the  node  in Eq. (4a) is fixed to a specified 
nominal  value An.  It is around this nominal  value  that the stationkeeping process 
controls the orbit to remain inside of a specified deadband region AA . Within  the 
deadband  the  node  is  allowed to drift. Stationkeeping maneuvers are performed  when  the 
orbit drifts to a boundary of the deadband. Utilization of this control strategy changes  the 
nature of the  dynamic response of the  perturbing  tesseral harmonics ( hLpq ( e )  sin(.) in  Eq 
(4a)). Because A is nearly stationary, the  terms  with q = 0 can be considered constant. 
However,  the terms with q f 0 are  nonautonomous because of  their  dependence  on 
perigee (a time  varying quantity). This functional dependence on time invalidates two 
fundamental assumptions in  the classical stationkeeping method: the nodal  time  history  is 
not  symmetric  around  the exact resonance  value,  and  the  nodal  acceleration is not 
guaranteed to have a constant sign  within a cycle (or, equivalently, the  action rate can 
pass  through a value of zero). 

To determine regions of phase space  that  have  the potential to encounter a passage 
through  an  action  rate zero set Eq. (4a) equal to zero. The result yields a function of node 
;3. and  perigee w that is parameterized by  eccentricity  when the semi-major axis is set to 
the exact resonance  value a* and  the inclination is specified. In the case of a GPS orbit, 
the  resonant semi-major axis takes the value 26560 km (i.e., a 12  hr orbit), and  the 
inclination is set to 55". Figure 2 plots the location of the action rate zeros for  selected 
values of eccentricity. Note that  the  behavior of these locations becomes  increasingly 
complex with a modest growth in eccentricity. Now,  at  an inclination of 55", perigee 
varies  in a nearly secular fashion, and, for a mission lifetime of 10 years  it  can  be 
expected to change  by -100". Hence, if a satellite initial condition is placed  near a line of 
zeros with  an irregular shape, there exists an increased possibility of encountering the 
zero as  perigee evolves. This possibility also becomes greater with  an increase of initial 
eccentricity. 

To investigate this two examples are considered  using elements selected from the 
GPS c~nstellation,~ but  with eccentricities that  are modified slightly from the  ideal 
circular case. Some of  the  mean elements that  are  common to all  the satellites in  the  GPS 
constellation include semi-major axis and  the inclination, which  take  the  values  defined 
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previously. The elements that  are unique for each satellite in the constellation include the 
ascending node i2 and  the  argument of latitude ( u  = w + M ). These elements are 
carefully selected so that the GPS constellation can achieve its required coverage 
objectives (i.e., 4 satellites inview  at  any  ground station at all times). On the  other hand, 
specifications for eccentricity and  perigee are secondary. Optimally, eccentricity should 
be zero, and perigee would be undefined. However, this is an idealized situation that is 
never  realized  in practice. The actual orbits always posses some latent eccentricity, and, 
hence, a value for perigee. Indeed, the GPS program  has a requirement to inject into the 
final drift orbit with  an eccentricity no greater than .011L4 Thus, it is entirely possible that 
a particular combination of elements could yield a situation where the node  will 
encounter a zero. Table 1 lists those satellites in the planned GPS constellation4 that  have 
values of the stroboscopic mean  node  nearest the action rate zero locations, as shown  in 
Figure 2. These orbits have the  most potential to encounter SK instabilities in their 
lifetimes. Note  the epoch associated with  the elements is April 15, 1999, this yields a 
mean Earth sidereal angle of 6,= 202.71'. The two cases studied are associated with 
satellite ID A4. In the first case the initial eccentricity has a value of .01, and  in  the 
second it  is initially .02. In both cases perigee  has  been  set to zero. The selected 
deadband region  has a width of 4" and a nominal nodal value of A,, = 14.698'.  The boxes 
shown in Figure2 for e = .01, and .02 have sides with lengths equal to  the  deadband  and a 
100' change in  perigee (i.e., a 10 yr mission). The boxes indicate the possibility of 
encountering an action rate zero during the lifetime of a mission. Examination of Figure 
2 shows that the selected initial conditions are such that the lst case, with e = .01, does  not 
encounter a zero over the satellite lifetime, and the 2nd case, with e = .02, does. 

Both cases utilize the Eccentric Orbit Stationkeeping (EOSK) algorithm developed  in 
reference [2] for use  with orbits that encounter action rate zeros. The controlled orbits are 
simulated for several thousands days  with  the results for semi-major axis, eccentricity, 
and  node  shown  in Figures 3 and 4. The force model used  in  the  propagation includes 
tesseral, zonal, lunar, and solar effects. In Figure 3, as expected, the trajectory does not 
encounter an action rate equal to zero, thus the nodal history exhibits the traditional 
'scallop' shape. In the second case, the trajectory passes through an action  rate equal to 
zero, as  seen  in  Figure 4. Evidence of this can be  seen in the irregular nodal histories 
during the  second cycle from 1100 to 2400 days. This is typical  of  the EOSK algorithm 
as it changes its grazing  and  burn boundaries to accommodate the  sign  change in the 
nodal acceleration. The EOSK algorithm is successful at keeping the  node  within the 
desired deadband  region during the entire mission. It is important to note that, for this set 
of initial conditions, the traditional east-west stationkeeping algorithm would  have 
become unstable during the 2"d cycle,  and  would not have  been able to maintain  the  node 
within the  desired deadband region. The other point  of  note is the behavior of 
eccentricity, in  the first case there was a variation of approximately Ae -.003 and  in  the 
second the  variation  was - .004. Clearly, a different value for initial perigee or epoch 
coupled with a shift  in eccentricity could bring the orbit into a regime  where an action 
rate zero can  occur during the mission lifetime. A better understanding of  the behavior of 
eccentricity is desirable so that  the SK instability issue can be  more  thoroughly assessed. 
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LONG  TERM  ECCENTRICITY  BEHAVIOR 
The previous discussion illustrated the central role that eccentricity has in  determining 

the possibility of  an encounter with  an  action rate zero. Thus, it would  be  beneficial to 
develop an  analytical  representation for the behavior of eccentricity as a function of time. 
Much  has  been  published  in this area,  and  it is conventional wisdom  that luni-solar 
perturbations can  have a significant impact on  the  behavior of eccentricity. Giacaglia' 
has written a thorough  review of nearly 40 years  of  published results regarding the effects 
of luni-solar perturbations on artificial satellite orbits. However, most prior work  has  not 
dealt  with  the issue of lunar resonance overlap and its consequences on  long-term 
eccentricity behavior. Ely  and Howell3 have  shown  that there exists an intricate web  of 
luni-solar resonances  that  can interact to produce chaotic and diffusive motion. The 
locations of the significant resonances can  be  located  by  analyzing linear combinations of 
the form m,h + m2a + m,a, L- 0 or mlh  + m, (h - hs) L- 0 ,  where (m, ,m2 ,m,) represent 
a vector of numbers. The  resonance interactions have dominant effects on the extremely 
long term behaviors of {e , i ,u ,Q}  . Eventhough  the  time scale for such motions  are 
typically  much longer than  that of a satellite mission, it is instructive to understand  the 
nature of the global  dynamics  and  the  time scales necessary to observe these dynamics. 
With this information it is possible to assess the time scales that  an asymptotic theory  will 
be valid. That is a first order averaging  approach  yields a solution that is accurate to O ( r )  
on  time scales of  order O ( I / E ) .  An analysis of the potential for chaos and/or  diffusion 
allows for a more quantitative assessment of this time scale. 

To illustrate the  phenomena a selected GPS-like initial condition, ( a ,  e,i,u,Q, M )  = 
(26560 km, .02., 55", 0", 8", 52"), is propagated for approximately 60,000 years.  The 
dynamical  model  used consists of only long period luni-solar perturbations (geopotential 
terms other than secular oblateness are  not present). This yields a set  of  dynamical 
equations that are not stiff, hence amenable to such a long term propagation. To illustrate 
the behavior of the motion,  the inclination and eccentricity are sampled on  returns to a 
specified ascending node  value (arbitrarily selected to be loo"), and plotted as a point  on 
the inclination/eccentricity plane. The time  span  between consecutive points is 
approximately 20 years.  The results are shown in Figure 5 as  an  array of plots. Each  plot 
is a snap shot in time. The  upper left plot represents the first 500 samples ( - 9950 years), 
and the lower left includes all 3000 samples ( - 59,692 years). Also shown  on  the  plots 
are the locations of the significant luni-solar resonances (i.e., mlh  + m,a + m,a, = 0 or 
m 1 h  + m 2 ( h  - h,) = 0 )  as functions of inclination and eccentricity. They  appear  as  the 
complex web  of intersecting lines. The initial condition is indicated on the diagram  and 
is located near  the  dominant luni-solar resonances  that impact the GPS constellation. 
Specifically, the largest  nearby  resonance is associated with luni-solar harmonic  terms 
that  have  an  angular  argument  of (2u+ Q) . The  straight line at the 56" inclination (at all 
eccentricities) identifies the resonance location. The other resonance is associated with a 
lunar harmonic with  angular  argument of (2u+ R, - n )  . This produces the curved line 
beginning  at  approximately 53.3". Clearly, for the first 1000 points the trajectory remains 
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confined to the region of these two resonances. The behavior is actually chaotic, however 
the  motion does not exhibit any  large scale excursions in eccentricity or inclination. Then 
between 1000 and 1500 samples the trajectory experiences large scale diffusion. As is 
typical  of this type of motion, there exists a tendency for the trajectory to follow a 
resonance curve, and then, at  an intersection with another resonance, it jumps to follow 
the other curve. The example also illustrates the potential for an initially near circular 
orbit to become nearly  hyperbolic  under  the influence of only luni-solar perturbations. 

ANALYTICAL  ECCENTRICITY  MODEL 

Since mission time scales, which  are  on order of 10 - 15 years,  are  much shorter than 
the  time frames illustrated in  Figure 5 it is reasonable to expect an asymptotic theory to 
produce qualitatively accurate eccentricity histories for the  span  being considered. 
Indeed, results will  show  that  the  analytical model developed in this study compares 
favorably with numerically generated results. Specifically, the behavior of eccentricity in 
the  region  of a GPS orbit is of interest; therefore the  model includes only those 
perturbations that dominate near  an inclination of 55" and  with eccentricities near zero. 
The harmonic terms are analyzed by the magnitude of  their coefficients divided  by the 
secular rate of their angular argument (i.e., the magnitude of  the harmonic coefficients of 
the  analytically integrated solution). Those with  the largest coefficients are retained. 
Also, note that, for the time scale of interest, the orbit is only  in shallow resonance with 
harmonic terms of the form h(a,  e,i)cos(2w + Q) . It is sufficiently shallow that a 
standard perturbation method can  be utilized to integrate the equation of  motion  that 
includes this term. The other resonance terms have insufficient time to impact the motion 
significantly, and can  be  neglected. As the previous discussion indicated, if the  time scale 
were  longer these assumptions would  not  be valid. 

The other  key feature affecting  the behavior of eccentricity is associated with  the 
tesseral harmonics. Controlling the stroboscopic node to be  nearly stationary introduces a 
coupling between eccentricity and  the  tesseral harmonics that  would  not ordinarily exist 
because the time scale of the  nodal  advance is much faster than  that of perigee.  However, 
since the controlled nodal rate is effectively zero, the  angular rate associated with the 
some of  the tesseral harmonics can  now  be attributed primarily to the  perigee rate. With 
the preceding observations in  mind, a Hamiltonian of long period terms can  be 
formulated that is specialized for the  phase space region applicable to the class of orbits 
that  are  near circular and  at  an inclination near 55". It is written formally as, 
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where  the secular term includes Earth's oblateness and luni-solar contributions. This term 
yields  the secular rates for perigee usee and  the ascending node as,, . The detailed 
equations for these rates and  the  long-period  harmonic  terms  in Eq. (5) are  found  in  the 
appendix. Note,  that  the lunar orbital parameters are referenced to the ecliptic plane, and 
all others (including the solar parameters)  are  referenced to the Earth's equatorial plane. 
For purposes of the analytical model, the  node il and solar ascending  node Qs are  held 
constant. The equation of  motion  for eccentricity is obtained  by  applying following 
perturbation equation to Eq. (5), 

- de - J=(I- JZ) aH JZ dH e JH 1 aH 
dt sona e aa na2e am 2sona2 an na2e a m  

- 
2 + " "- +". (6) 

Proceeding in  the standard way,  the  equation of motion  can  be  analytically  integrated  by 
holding  the harmonic coefficients constant  and  using  the secular rates to evaluate the 
angles as linear functions of time. The result is an equation for eccentricity that is a 
function of time  and  the initial mean elements, and, formally, takes the form, 

e( t )  = e, + 

p C(a, , e,, i,, ; parameters) I cOsl 

where  the  set  of vectors {(m, , m2, m3, m4, m, )} specifies the linear combinations of angles 
found  in  Eq. (5). The coefficients C(a,, e,, i,;parameters) are functions of  the initial 
mean elements and parameters such as,  the  harmonic coefficients J ,  and  the  third  body 
orbit elements. 

The analytical  model defined in  Eq. (7) yields a convenient method for ascertaining 
the  behavior of eccentricity over time  as a function of initial values. As an illustrative 
example consider a satellite with (Qil,,) = (188.089',19.638'), this represents Sat A4 
with a slightly different argument of latitude (u  = 64.638') or a slightly  different defining 
epoch time ( 6, = 197.71' ). The initial eccentricity  has  been  set  at e = .01. Using these 
values, eccentricity is computed as  function of the initial perigee  value  and  time  and 
illustrated in  Figure 8. It is evident from  the figure that  most  values of perigee  below 
180' yield eccentricities that grow to near .015, and above 180' many  approach zero. 
Note  there is a small region  where  the  eccentricity is less than zero, this is an  artifact  of 
the  perturbation method. A potential technique to avoid this is to rescale Eq. (6) by 
dividing by e and integrating as  before.  Doing so yields a function of time for 
eccentricity that formally has the form, 
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C 
e ( [ )  = e,Exp . cos(.) 

e, (m@+ m,Q) 1 
This approach  was initially utilized for this study, with  good results. Indeed, using the 
same conditions as those utilized to make Figure 6 and applied to Eq. (8) produce the 
eccentricity behavior illustrated in  Figure 7. Now there is no region  that  yields  negative 
values for eccentricity and qualitatively the results are very similar to those  from  the 
standard theory. However, unlike the standard approach, the result in Eq. (8) has terms of 
order O(J, ,  / e , )  because of the coupling with the tesseral harmonics. This result  is  not 
asymptotic as e,, + 0 , hence the  predicted behavior diverges from the true behavior. 
Numerically, if the coupling tesseral terms yield  an order of less than O(1) , then  Eq. (8) 
yields satisfactory results as  seen  in Figure 7. However this result is local  and 
nonuniform in e, . Since Eq. (7) is uniform, it is preferred for assessing the qualitative 
behavior of eccentricity. 

Returning to the example of Sat A4 with the modified nominal node (A,, = 19.638"), 
the shift in node coupled with  an anticipated growth of eccentricity of Ae = .003 places 
the satellite trajectory  in a region that should encounter an action rate zero (see Figure 2) .  
The controlled trajectory result is shown  in Figure 8. It is evident from the semi-major 
axis history  and  the  nodal  history that the  trajectory passes through  an  action rate zero 
during the  third  cycle (1900 to 3500 days). The EOSK algorithm compensates by 
redefining target boundaries and  performing a maneuver to drift to the  new bum boundary 
(- 18"). The behavior of eccentricity is shown in the middle plot. The numerically 
propagated  result is shown  with  the solid line and  the  analytically  propagated  result 
(using Eq. (7)) is  shown  with  the  dashed line. The analytical result correctly captures the 
qualitative behavior, and is quantitatively accurate to within  10% of the true values. 
Comparisons (not shown) with  the  other trajectories examined in this study  yield similar 
qualitative and quantitative agreement. Using  the combination of  the  action zero 
locations predicted  using Eq. (4a) and  the  analytical behavior of eccentricity from Eq. (7), 
it is now possible to ascertain the likelihood that a specific GPS mission will  encounter 
an action rate zero and  need to utilize a robust SK approach, such as  the EOSK algorithm. 

CONCLUSION 
These results indicate that an orbit inclined at 55" with  modest eccentricity can 

encounter significant regions of  phase space that have action rate zeros. The location  of 
these zeros is primarily a function of the nominal stroboscopic node, perigee, and 
eccentricity. As seen  in Figure 2, the curves defining these locations become  increasingly 
complex with a modest growth in eccentricity. This study has also shown  that  the 
combined interaction of luni-solar perturbations and tesseral harmonics (with a stationary 
stroboscopic node) dominates the behavior of eccentricity, and  can lead to  a growth of 
eccentricity. Indeed,  it is possible that eccentricity changes over a mission lifetime can 
put a satellite orbit that, initially avoided  action rate zeros, into a region  of  space  where it 
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will likely encounter them. This has  potentially significant operational impacts. The  next 
phase GPS satellites are to be  delivered into their final orbits with eccentricities not to 
exceed 0.01L4 The  preceding  analysis shows that  GPS satellites in orbits with  borderline 
eccentricities may  run  the risk of encountering SK instabilities using  traditional 
techniques. Utilization  of  an enhanced SK method (such as the EOSK approach), 
repositioning the satellite to avoid  the  action  rate zeros, or controlling eccentricity are all 
potential solutions to  this problem. At a minimum,  once  an operational orbit  is  attained 
an assessment should be made as to likelihood of  the satellite encountering these 
instabilities during the  mission lifetime. 
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APPENDIX 
Detailed equations for the secular rates are as follows, 

3 n: [s + 7e2 + (16 + 9e2) cos 2i] 
512 n (I - 
" (1 + 3 cos 2i,  x1 + 3 cos 20, )+ 

" 3 nz [8+7e2  +(16+9e2)cos2i] 
128 n (1-e2l2 

(1 + 3 cos 2is) , 

3 nJ ,  
2 (1-e ) 

Q =-- 
see , ,cosi- 

3 n: (2+3e2)cosi 
" (1 + 3 cos 2i, 11 + 3 cos 20,)- 

" (1 + 3 cos 2iS) , 

128 n (1-e2), 

3 nz (2+3e2)cosi 
32 n (1-e2), 

where n, n,, and ns refer to the  mean  motion  rates of the satellite, the Moon, and  the 
Sun, respectively. The  angle 0, is the obliquity of the ecliptic. Recall that all  lunar  orbit 
parameters are referenced to the ecliptic plane,  and solar apparent orbit parameters are 
referenced to the  Earth's equatorial plane. Detailed equations for the  long  period 
harmonic terms identified  in  the Hamiltonian of Eq. (5) take the form, 
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P 
a 

VJPS = -- 

E[~]sini(l-2cosi-3cos’i)J3,cos[2(A-132)]- 8 a  

(1+cosi)2J22cos[2(1-A22)+w]+ + O ( e 2 ) .  (13) 

-e - sin2 J,, COS[~(A - a2,) - w] 
4 a  
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Figure 1: Poincark  section of GPS class of orbits  for  different eccentricities (w=  65") 
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Figure 2: Action  rate zeros parameterized by eccentricity 
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Days 

Figure 3: Stationkeeping cycle for the case with e = .01. No action rate zeros 
encountered. 
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Figure 4: Stationkeeping cycle for  the case with e = .02. Action rate  zero  encountered in 
the  third cycle (1 100 to 2400 days) and  the EOSK algorithm  compensates  for  zero. 
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Figure 5: Extremely long term behavior of  eccentricity vs. inclination for a GPS like 
orbit. The dynamics illustrate chaos and diffusion as it follows resonance locations. 
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L o o 0  Days 

Figure 6: Analytical eccentricity behavior as a function of initial perigee and time, 
obtained using  standard perturbation theory. 

Figure 7: Analytical  eccentricity behavior as a function of initial perigee  and  time, 
obtained  using  standard  perturbation theory. 
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Figure 8: Same initial  conditions  as  in  Figure 3 except  perigee  has  been  shifted from an 
initial  value of 0" to 8". An  action  rate  zero is encountered  and  the EOSK algorithm 
compensates.  Note  that  the  dashed  line  in  the  eccentricity  figure  represents  the 
analytically  predicted  value  using  the  standard  perturbation  theory, Eq. (7). 
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